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Statistical Analysis of RNA Backbone�
Guillermo Sapiroy

Eli Hershkovitz andAllen Tannenbaumz
Loren Dean Williamsx

Abstract

RNA backbone conformation analysis has been demon-
strated to be particularly difficult due to the large number
of torsion angles per residue and the large variability of
the raw data. Due in part to the importance of local struc-
tures in the understanding of RNA catalysis and binding
functions, studies in this area have recently received in-
creased attention. In this work we use classical tools from
statistics and signal processing to search for clusters in the
RNA backbone torsion angles. Results are reported both
for scalar studies, where each torsion angle is separately
studied, and for vectorial studies, where several angles are
simultaneously clustered. Using techniques from optimal
quantization, we automatically find the torsion angle clus-
ters. With these clustering techniques, we find RNA back-
bone motifs, both at the single residue level (phosphate-
to-phosphate) and at the suites level (base-to-base) pars-
ing. These two parsing techniques are also compared us-
ing mutual information measurements. We conclude the
work with statistical analysis of some of these motifs, and
optimal fitting of torsion angle distributions in the most
significant clusters. The whole process is fully automatic
and based on well-defined optimality criteria.

1 Introduction

RNA plays an important role in storage and communica-
tion of information, as well as in other important biologi-
cal processes. As with proteins, the 3D structure of RNA
is essential for performing these functions. The 3D struc-
ture of RNA is different than that of proteins, with six
torsion angles in each residue; see Figure 1.�Work supported by ONR, DARPA, NSF, ARO, AFOSR, and NIH.yElectrical and Computer Engineering and Digital Technol-
ogy Center, University of Minnesota, Minneapolis, MN 55455,
guille@ece.umn.eduzSchools of Electrical & Computer Engineering and Biomedical En-
gineering, Georgia Institute of Technology, Atlanta, GA 30332-0250,
eli@theor.chemistry.gatech.edu, tannenba@ece.gatech.edu.xSchool of Chemistry and Biochemistry, Georgia Institute ofTech-
nology, Atlanta, Georgia 30332, loren.williams@chemistry.gatech.edu.

The work described here follows recent efforts in study-
ing the local 3D structure of RNA, e.g., [5, 9, 10, 11]. In
this paper we use classical techniques from statistical sig-
nal processing to study the RNA torsion angles, which
are illustrated in Figure 1; see also [15]. We present
fully automatic techniques to search for motifs (conform-
ers/rotamers) in the RNA backbone, both at the level of
individual residues or suites and at the level of a group
of consecutive ones. Note that in [5], we considered
the problem of finding repeating conformational states
(conformational motifs) and representing them as repeat-
ing strings of ASCII characters. The use of quantiza-
tion makes the recent approaches of [5, 9] fully automatic
and based on well defined distortion and quality metrics.1

Additional statistical analysis techniques demonstratedin
this paper are mutual information to compare between
residue and suite parsing, optimal fitting of the main tor-
sion angle clusters, and principal component analysis of
key found motifs.

2 Scalar and Vector Quantization

In this section, we briefly describe the basic concepts of
vector quantization that we will use for clustering. Details
on this technique can be found, e.g., in [2], from which we
have prepared the summary we now present. Note that in
this work we restrict ourselves to the use of this cluster-
ing technique, while in the future we plan to use more
advanced ones such as those reported in [12].2

Vector quantization (VQ) is a clustering technique orig-
inally developed for lossy data compression. In 1980,
Linde et al., [8], proposed a practical VQ design algo-
rithm based on a training sequence. The use of a training
sequence by-passes the need for multi-dimensional inte-
gration, thereby making VQ a practical technique, imple-
mented in most scientific computation packages, such as
Matlab (www.mathworks.com).

A VQ is nothing more than an approximator. The idea

1Vector quantization was used in the context of protein structure; e.g.,
[6].

2We should also note that vector quantization is often also known in
the literature ask-means clustering.
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Figure 1: RNA backbone with six torsion angles labeled on
the central bond of the four atoms defining each dihedral. The
two alternative ways of parsing out a repeat are indicated: A
traditional nucleotide residue goes from phosphate to phosphate
(changing residue number between O5’ and P), whereas an RNA
suite, which is more appropriate for local geometry analysis,
goes from sugar to sugar (or base to base). Only the angles�, , Æ, and � are investigated in this study. This image was
obtained from [9], where the reader is directed for a detailed
description of the reasons for using both parsing approaches.

is similar to that of “rounding-off” (say to the nearest inte-
ger). An example of a 1-dimensional VQ is shown in Fig-
ure 2. Here, every number less than -2 are approximated
by -3. Every number between -2 and 0 are approximated
by -1. Every number between 0 and 2 are approximated
by +1. Every number greater than 2 are approximated by
+3. Figure 2 also presents a two-dimensional example.
Here, every pair of numbers falling in a particular region
are approximated by the red star associated with that re-
gion.

Figure 2: One (top) and two (bottom) dimensional examples
of clustering via (vector) quantization. All the points in agiven
interval (in one-dimension) or a given cell (two-dimensions) are
represented by the red marked “center.” (This is a color figure.)

The VQ design problem can be stated as follows. Given

a vector source with its statistical properties known, given
a distortion measure, and given the number of desired
codevectors, find a codebook (the set of all red stars) and a
partition (the set of blue lines) which result in the smallest
average distortion.

We assume that there is a training sequence (e.g., the
measured torsion angles in RNA backbone) consisting ofM source vectors of the formT = fx1; x2; :::; xMg.
We assume that the source vectors arek-dimensional,
e.g.,xm = fxm;1; xm;2; :::; xm;kg, for 1 � m � M .
Let N be the number of desired codevectors and letC = f1; 2; :::; Ng be the codebook, where eachn,1 � n � N , is of coursek-dimensional as well. LetSn be the cell associated with the codevectorn and letP = fS1; S2; :::; SNg be the corresponding partition of
thek-dimensional space. If the source vectorxm is in the
encoding regionSn, then its approximated byn, and let
denote byQ(xm) = n (if xm 2 Sn) such a map. Then,
assuming for example a squared error distortion measure,
the average distortion is given byD = 1MkPm=1M kxm �Q(xm) k2, wherek e k2= e21 + e22 + :::+ e2k.

The design problem then becomes the following: Given
the training data setT and the number of desired code-
books (or clusters)N , find the cluster centersC and the
space partitionP such that the distortionD is minimized.
This problem can be efficiently solved with the LBG algo-
rithm [4, 8], and as mentioned above, its implementation
can be found in most of the popular scientific computing
programs.

3 Clustering the RNA Backbone
Torsion Angles

We first report results from scalar quantization, where
each one of the angles are studied separately. Once this
is done, we will analyze all torsion angles as a vector. We
use two data sets. One follows the work reported in [5],
and is for a single RNA with 2914 residues (HM LSU
23S rRNA, rr0033), while the second one follows work
reported in [9], and is for a collection of 132 RNAs,3 giv-
ing a total of 10463 residues. Here, as in the rest of this
work, residues with unknown torsion angles were ignored
in the analysis. The data was obtained from theNucleic
Acid Database[13]. Although we have not performed the

3With NDB and PDB codes: ar0001, 02, 04, 05, 06, 07, 08, 09, 11,
12, 13, 20, 21, 22, 23, 24, 27, 28, 30, 32, 36, 38, 40, 44; arb002, 3, 4,
5; arf0108; arh064, 74; arl037, 48, 62; arn035; dr0005, 08, 10; drb002,
03, 05, 07, 08, 18; drd004; pd0345; pr0005, 06, 07, 08, 09, 10,11, 15,
17, 18, 19, 20, 21, 22, 26, 30, 32, 33, 34, 36, 37, 40, 46, 47, 51,53,
55, 57, 60, 62, 63, 65, 67, 69, 71, 73, 75, 78, 79, 80, 81, 83, 85,90,
91; prv001, 04, 10, 20, 21; pte003; ptr004, 16; rr0005, 10, 16, 19, 33;
tr0001; trna12; uh0001; uhx026; ur0001, 04, 05, 07, 09, 12, 14, 15,
19, 20, 22, 26; urb003, 08, 16; urc002; urf042; url029, 50; urt068; and
urx053, 59, 63, 75.
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filtering techniques in [9], these might be used to improve
our results. As in [5], we here limit the analysis to the
torsion angles�, , Æ, � (see Figure 1), since the other
ones are either dependent with respect to these ones or
have unimodal distributions [14, 16]. There is no intrin-
sic limitation in our technique in working only with this
reduced set of angles (moreover, being the process fully
automatic, the work can certainly be carried out for larger
sets), but this will clarify the presentation.

In Figure 3 we show the distributions for these four
angles for the two datasets. A few remarkable things to
notice are the following. First, the distributions are very
similar for both datasets, pointing out to the fact that the
local structures are not only “rotameric” for a given RNA
(first data set) but also across RNAs (second dataset). Sec-
ondly, although the distributions for� and� are very sim-
ilar (since these can be considered analogous angles), the
secondary picks for� are much broader and less well de-
fined, Figure 4. This has been the subject of controversy,
and for example, the authors of [9] solve this by filtering,
and then reporting more clusters than in the non-filtered
approach in [5]. Still, although this filtering is important
in the analysis, it doesn’t explain the unique long tail in
the � distribution; see also [15]. In particular, note that
the rotation of� is sterically more restricted than that of�
by proximity to the furanose ring. Here, we will limit our
analysis (see below) to what the VQ statistical analysis
tells us, working with the raw data and without any addi-
tional constraints. Understanding this difference between
the� and� torsion angles is something that intrigues us
and we hope to address in the near future.

Using the automatic and optimal quantization tech-
nique, and requesting the numberC of codevectors fol-
lowing [5] (or just from visual inspection) we found the
codevectors or centers of the clusters given in Table 1.

Dataset 1� 68.3 (1), 169.7 (2), 294.3 (3) 50.4, 60.0 (1), 175.8 (2), 292.3 (3)Æ 81.7 (1), 147.8 (2)� 118.0 (2), 286.7 (1)
Dataset 2� 68.6 (1), 167.8 (2), 294.0 (3) 50.1, 65.0 (1), 174.4 (2), 290.2 (3)Æ 82.7 (1), 144.4 (2)� 116.4 (2), 286.0 (1)

Table 1: Cluster centers automatically computed by our tech-
nique. Numbers in parenthesis are used for cluster identifica-
tion.

We note once again the very similar results for both data
sets. We should also note that for, two of the centers are
very close to each other, and will be considered just one

� 
Æ �
� 
Æ �

Figure 3: Cumulative distributions of the torsion angles�,, Æ, and� for the single RNA (first two rows) and the collec-
tion of RNAs (last two rows). We observe the similitude among
the distributions, marking the presence of “rotamers” not only
for a given RNA but also across RNAs. We also observe clear
modes, which are automatically detected by the proposed clus-
tering technique. In addition, note that the� torsion angle has a
large tail not present in the other distributions.

when we proceed to cluster the data. Note also that al-
though we have pre-defined the number of clusters, this
could also be left as part of the automatic process, for ex-
ample via the expectation minimization (EM) algorithm.
We have observed that increasing the number of clusters
doesn’t produce a significant change in the distortionD,
indication that the selected number of clusters is enough.
Regarding�, if additional clusters are requested, e.g., 3
clusters, for the first dataset these are automatically found
at 85.86, 188.25, and 289.27, thereby splitting the large
tail (following the directions reported in [9]).

We should also comment on the particular distributions
in each cluster. There are a number of reasons for the vari-
ability inside each cluster, and therefore it is important to
understand the possible statistical explanation for it, since

3



Figure 4: The tail of� for the second dataset. Although two
picks can be “guessed,” the distribution is much more flat than
for example for the� torsion angle.

this is connected to problems in the data acquisition but
also to the RNA dynamics. We have experimented with
a number of fitting functions, and we have observed that
the best fitting (with a significant improvement) for the
major clusters is obtained using exponential distributions,
and not Gaussian ones as argued for example in [5]. For
example, for the first dataset, the kurtosis for the main
cluster is 5.3 for� and 4.6 for�, clearly indicating a sig-
nificant deviation from Gaussian distributions. The log-
likelihood while fitting an exponential function improves
by 24% with respect to fitting a Gaussian for the� torsion
angle and by 23% for the� torsion angle. Similar behav-
ior is observed for the other dataset, although sometimes
the improvement is a bit more moderate (e.g., for the first
mode of� in the first dataset, the improvement is of 16%).
Understanding the distributions in each cluster is crucial
for future steps of this research, namely probabilistic de-
sign.

3.1 Vector Quantization and Binning

The results described above address the scalar quantiza-
tion of the torsion angles, and will already lead to the
fully automatic motif finding technique reported in the
next section. We can of course also perform vector quanti-
zation, and provide this way an additional automatic way
to study the vector clusters, without the need to perform
visualization based decisions such as those in [5, 9]. For
example, if we request 6 centers for the pair(�; �), we
obtain(167:6; 284:6); (291:4; 189:2); (69:1; 284:7);(294:4; 289:4); (105:1; 110:5); (287:4; 86:7):4

We note that the� component of the automatically de-
tected centers is as in the case of scalar quantization, while
the� component includes terms that appear both when we
request 2 and 3 bins for� in the scalar case. Perform-
ing this vectorial analysis, for 2 or more torsion angles
together, gives us information on the importance of the
distribution centers when the angles are considered as a

4These results are for residue-based pars-
ing, while for suite-based parsing we obtain(167:6; 284:6); (287:5; 86:7); (294:4; 289:4); (105:3; 109:8);(291:4; 189:2); (69:2; 284:2): More details in these two types of
parsing are provided below.

whole. We could then use this as well, instead of the scalar
work which we continue below as the basis for vectorial
clustering.

4 Automatically Finding Motifs

With the above automatic procedure, we can proceed and
find motifs. Basically, we cluster the torsion angles ac-
cording to their proximity to the centers in Table 1. In the
results reported below, we have not considered a “dead
zone” (equivalent to the manually defined bins “other”
in [5], and to some of the results from the filtering ap-
proach in [9]), and each torsion angle is classified to one
of the clusters. Following the filtering approach in [9] and
the “other” bins in [5], we could be more conservative
and only consider torsion angles that are at a certain dis-
tance of the cluster centers, while considering the rest as
“noise.” This of course is done also in an automatic fash-
ion, for example requesting the angles to be atp times the
variance inside the class. Therefore, the technique here
proposed provides not only an automatic clustering ap-
proach, but also a way to filter out data if so desired.

Using the notation in Table 1, we present in Table 3
the most frequent cells for the residues in both datasets
(left and right for each pair), and for residue and suite
parsing (left and right pairs). Similar results were reported
in [5] for the first dataset and for residue parsing (that is,
corresponding only to the top-left table), where the cluster
centers and boundaries were defined manually.

The next step if of course to look for motifs for more
than one consecutive residue. In Table 2, we report the
larger A-helices we automatically found (these are given
by the composition3111, see [5]) in each residue of the
first dataset.

We also found 27 tetraloops (defined by the series 3111,
3111, 2111, 3111), starting at positions 149, 252, 313,
468, 505, 624, 690, 804, 1054, 1197, 1326, 1388, 1468,
1499, 1595, 1628, 1706, 1748, 1793, 1808, 1862, 1991,
2061, 2248, 2411, 2629, 2695; and four e-strands (3111,
3112, 2122, 3222, 3111) starting at locations 172, 210,
1367, 2689.

5 Residue vs. Suite Parsing

RNA can be parsed by residues or by suites as in [9]; see
Figure 1. The motivation for the latter is the high corre-
lation between the adjacent phosphate torsional angles�
and�. This correlation was established for dinucleotides
and short oligonucleotides [15]. Here we will extend the
relation to any RNA molecule using information theory.

To try to further understand the differences between the
two forms of parsing the RNA backbone, we computed
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Starting residue Length
12 12
98 10
294 10
343 13
399 10
418 10
519 13
589 14
606 13
747 12
796 10
1014 14
1139 10
1217 12
1261 16
1291 20
1317 11
1329 11
1453 17
1507 17
1535 24
1606 10
1760 11
1843 12
1896 23
1920 21
2259 12
2429 13
2542 10
2621 10
2708 10

Table 2:Location and length of larger A-helices automatically
found in the first dataset.

the mutual information between� and�, both for residue
parsing (�(i) against�(i)) and for suite parsing (�(i)
against�(i�1)). Mutual information is defined as follows
[1]: Let x andy be two random variables. First, theen-
tropy of x is defined asH(x) := �Ex[log(P (x)℄, whereEx[�℄ stands for the expectation. Entropy measures (in
bits) the randomness of a signal, the larger the entropy the
more random the variable is. Thejoint entropyis defined
asH(x; y) := �Ex[Ey[log(P (x; y))℄℄, and summarizes
the degree of dependence ofx ony, while theconditional
entropy if given by H(yjx) := �Ex[Ey[log(P (yjx))℄℄,
which summarizes the randomness ofy given knowledge
of x. We can now define themutual information,MI(x; y) := H(y)�H(yjx) = H(x)+H(y)�H(x; y);
which is a measure of the reduction of the entropy (ran-

domness) ofy givenx.
In the case of residual parsing, we obtainedMI(�; �) = 0:83, while for suites parsing we obtainMI(�; �) = 1:16.5 This increase in mutual informa-

tion indicates that the suites parsing is more appropri-
ate (as claimed in [9]), at least that these torsion angles
are functionally more dependent with this parsing.6 We
should add, for completeness, thatMI(�; ) = 0:82
(H() = 3:56), MI(�; Æ) = 0:46 (H(Æ) = 2:74), andMI(; Æ) = 0:38.

6 Principal Component Analysis of
Tetraloops

As done for secondary structures in protein research, e.g.,
[3], it is important to study the variability of the motifs
found in RNA, due once again to its possible implications
in the dynamics. Following the work on proteins [3], we
perform principal component analysis (PCA) on the 27
tetraloops reported above and in an additional larger data
set.

The basic procedure is as follows. LetL denote the
number of residues in the motif (L = 4 for tetraloops)
andN the number of samples (27 for our first example).
The first step in the PCA is to compute the covariance ma-
trix C, which is a square matrix of dimension4L (four
angles per each residue), whose elements are given byCi;j = 1N�1PNm=1(xmi� < xi >)(xmj� < xj >);
where< xi > ,is thei-th coordinate of the mean struc-
ture. We then compute the eigenvalues and eigenvec-
tors of this matrix,�q and~vq . The eigenvalues distribu-
tion will tell us the number of modes in this class. In
Figure 5, top, we clearly see 2 to 3 dominant eigenval-
ues for this data set, considering the 4 angles(�; ; Æ; �).
In the middle, we repeat the computation for a total of
261 tetraloops,7 considering now all the six torsion angles
(�; �; ; Æ; �; �), and defining a tetraloop as the combina-
tion (3?11?1; 3?11?1; 2?11?1; 3?11?1), where the sym-
bol ? stands for “don’t care” for those angles. We
observe again the 2 (maximum 3) dominant eigenval-
ues (analysis of the eigenvectors will be reported else-
where). When using the same data set, again with
all the six torsion angles, but defining a tetraloop as
(3?11?1; 2?11?1; 3?11?1; 3?11?1) we obtain 168 exam-
ples. The eigenvalues distribution is shown in the last fig-
ure on the bottom, with two dominant eigenvalues once

5Both� and� haveH = 4:59.
6For computing theMI, we quantized the� and� torsion angles in

100 bins. We also tested for different numbers of bins and always the
mutual information increased for suite parsing.

7rr0011, rr0033, rr0055, rr0043, rr0044, rr0060, rr0061, rr0077,
rr0078 and rr0079; HLSU 50 from NDB.
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again, even stronger than before.8 Note that the first and
second histograms of Table 5 refer to “tetraloops” in the
sense just defined, while the third histogram refers the
“tetraloops” in the standard sense [7, 18].

We have used simple (and linear) analysis in this case,
while there is no reason to believe that the space of RNA
motifs is flat. We plan to investigate the use of tools that
consider the geometry of the space of motifs, e.g., [17],
where orders of magnitude more data will be needed.
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Figure 5:Frequency plots of eigenvalues corresponding to the
tetraloops PCA analysis. The first two plots use tetraloops in the
sense defined in this paper while the third in the standard sense.

7 Concluding Remarks

In this paper we have seen how classical techniques from
statistical signal processing are useful for the analysis of
RNA structure. These techniques can be augmented with
novel clustering approaches being developed by the learn-
ing and signal processing community, and investigating
those, together with the search for new motifs, is the sub-
ject of our current efforts.

8The stability of these motifs, and comparison between residue and
suite parsing, is the subject of current studies.
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�Æ� Freq.
3 1 1 1 1812
2 2 1 1 125
3 1 2 2 114
3 1 1 2 111
2 1 1 1 86
3 1 2 1 58
1 1 1 1 47
1 2 1 1 42
2 1 2 2 39
1 1 2 1 38
3 2 1 1 30
1 3 2 2 23
2 1 2 1 21
1 3 1 1 20
1 1 2 2 20
1 1 1 2 19
3 2 2 2 13
3 3 1 1 13
2 2 2 2 12
1 3 2 1 11
3 3 2 1 10
3 2 1 2 10
1 2 2 1 9
2 1 1 2 7
3 2 2 1 6
3 3 2 2 6

�Æ� Freq.
3 1 1 1 6702
2 2 1 1 593
3 1 1 2 337
3 1 2 2 294
2 1 1 1 294
3 1 2 1 187
1 2 1 1 182
1 1 1 1 161
3 2 1 1 111
1 3 1 1 91
1 1 2 1 77
2 2 1 2 74
2 1 2 2 70
1 1 2 2 70
2 1 2 1 58
2 1 1 2 54
1 1 1 2 53
3 3 1 1 41
3 2 2 2 40
3 2 1 2 40
1 3 2 2 39
2 2 2 2 38
1 2 1 2 37
1 2 2 1 27
1 3 2 1 24
3 3 2 1 23

�Æ� Freq.
3 1 1 1 1835
3 1 2 1 136
2 2 1 1 125
3 1 1 2 92
2 1 1 1 52
2 1 1 2 42
1 2 1 2 40
3 1 2 2 37
2 1 2 2 36
1 1 2 2 36
1 1 1 1 35
3 2 1 1 31
1 1 1 2 31
2 1 2 1 24
1 1 2 1 22
1 3 2 1 19
1 3 2 2 15
1 3 1 1 14
3 3 1 2 13
2 2 2 1 12
3 3 2 1 12
3 2 2 2 11
1 2 2 2 10
3 2 1 2 9
3 2 2 1 8
2 2 1 2 8
1 2 1 1 7
1 3 1 2 7

�Æ� Freq.
3 1 1 1 6946
2 2 1 1 630
3 1 2 1 375
3 1 1 2 298
2 1 1 1 206
2 1 1 2 148
1 2 1 2 144
3 2 1 1 123
1 1 1 2 120
3 1 2 2 119
1 1 1 1 104
1 1 2 2 91
1 3 1 1 84
1 2 1 1 76
2 1 2 1 71
2 2 1 2 68
2 1 2 2 64
1 1 2 1 58
2 2 2 1 43
1 3 2 1 38
3 2 2 1 34
3 3 1 2 34
3 2 1 2 32
3 2 2 2 28
1 3 2 2 27
1 2 2 2 26
3 3 2 1 26
1 3 1 2 23

Table 3:Frequency of most popular torsion angles motifs, both for residue parsing (first two columns) and suite parsing (last two
columns). The table on the left of each pair corresponds to the first dataset while the one on the right corresponds to the second
dataset. Note that angles of the first two columns correspondto the same residue, while the last two columns to suites; seeFigure
1.
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